## Rearrange Array to Maximize Prefix Score Solution

You are given a **0-indexed** integer array `nums`

. You can rearrange the elements of `nums`

to **any order** (including the given order).

Let `prefix`

be the array containing the prefix sums of `nums`

after rearranging it. In other words, `prefix[i]`

is the sum of the elements from `0`

to `i`

in `nums`

after rearranging it. The **score** of `nums`

is the number of positive integers in the array `prefix`

.

Return *the maximum score you can achieve*.

**Example 1:Rearrange Array to Maximize Prefix Score Solution**

Input:nums = [2,-1,0,1,-3,3,-3]Output:6Explanation:We can rearrange the array into nums = [2,3,1,-1,-3,0,-3]. prefix = [2,5,6,5,2,2,-1], so the score is 6. It can be shown that 6 is the maximum score we can obtain.

**Example 2:Rearrange Array to Maximize Prefix Score Solution**

Input:nums = [-2,-3,0]Output:0Explanation:Any rearrangement of the array will result in a score of 0.

**Constraints:Rearrange Array to Maximize Prefix Score Solution**

`1 <= nums.length <= 10`

^{5}`-10`

^{6}<= nums[i] <= 10^{6}

## Solution to Rearrange Array to Maximize Prefix Score:

To maximize the score, we want to make sure that the positive numbers in the array are placed at the beginning. Since we can rearrange the elements of the array, we can sort the array in decreasing order and then calculate the prefix sums.

Here’s the algorithm:

- Sort the array nums in decreasing order.
- Initialize a count variable to 0 and a prefix sum variable to 0.
- Iterate over the elements of nums and for each element x, do the following: a. If x is positive, add it to the prefix sum and increment the count. b. If x is non-positive, break out of the loop.
- Return the count.

#### Here’s the Python code that implements the above algorithm:

def max_score(nums):

nums.sort(reverse=True)

count = 0

prefix_sum = 0

for x in nums:

if x > 0:

prefix_sum += x

count += 1

else:

break

return count